PtEtaPhiMLorentzVector

class coffea.nanoevents.methods.vector.PtEtaPhiMLorentzVector[source]

Bases: LorentzVector, SphericalThreeVector

A Lorentz vector using pseudorapidity and mass

This mixin class requires the parent class to provide items pt, eta, phi, and mass. Some additional properties are overridden for performance

Attributes Summary

E

Alias for t

eta

Pseudorapidity

mass

Invariant mass (+, -, -, -)

mass2

Squared mass

phi

Azimuthal angle relative to X axis in XY plane

pt

Alias for r

r

Distance from origin in XY plane

rho

Distance from origin in 3D

rho2

Squared rho

t

Cartesian time component

theta

Inclination angle from XY plane

z

Cartesian z value

Methods Summary

multiply(other)

Multiply this vector by a scalar elementwise using x, y, z, and t components

negative()

Returns the negative of the vector

Attributes Documentation

E

Alias for t

eta

Pseudorapidity

\(-\ln\tan(\theta/2) = \text{arcsinh}(z/r)\)

mass

Invariant mass (+, -, -, -)

\(\sqrt{t^2-x^2-y^2-z^2}\)

mass2

Squared mass

phi

Azimuthal angle relative to X axis in XY plane

\(\text{arctan2}(y, x)\)

pt

Alias for r

r

Distance from origin in XY plane

\(\sqrt{x^2+y^2} = \rho \sin(\theta)\)

rho

Distance from origin in 3D

\(\sqrt{x^2+y^2+z^2} = \sqrt{r^2+z^2}\)

rho2

Squared rho

t

Cartesian time component

\(\sqrt{\rho^2+m^2}\)

theta

Inclination angle from XY plane

\(\text{arctan2}(r, z) = 2\text{arctan}(e^{-\eta})\)

z

Cartesian z value

\(\rho \cos(\theta) = r \sinh(\eta)\)

Methods Documentation

multiply(other)[source]

Multiply this vector by a scalar elementwise using x, y, z, and t components

In reality, this directly adjusts pt, eta, phi and mass for performance

negative()[source]

Returns the negative of the vector